Tutorial 2
Q.1
Show that f and g are integrable on a bounded set A
implies that the product fg is also integrable.
Prerequisite:
Recall the definition of integrability on bounded set.
Let A be bounded & f: A > IR. We say f is integrable on
A if f rectangle
$$R \supseteq A$$
 st. f is integrable on R, where
 $\overline{f(x)} = \begin{cases} f(x) & \text{if } x \in A \\ 0 & \text{if } x \in R \setminus A \end{cases}$.
 $\int_A f dV := \int_R \overline{f}$

Solution:
Since
$$fg = \frac{1}{4}(|f+g|^2 - |f-g|^2)$$
, it suffices to show that
if f is integrable on A , then so is f^2 .
WLOG, assume $f \neq 0$. [The case when $f=0$ is thin al)
By def. of integrability, \exists rectangle $R \ge A$ s.t. \bar{f} is
integrable on R .
In other words, $\forall c > 0$, \exists partition P of R s.t.
 $WL\bar{f}, P) - \mathcal{L}(\bar{f}, P) < \frac{\epsilon}{2M}$, $M := \sup |f|x||$
Note that $\bar{f}^2 = (\bar{f})^2 = |f|^2$, and $\begin{cases} \sup \bar{f}^2 = (\sup |\bar{f}|)^2 \\ \inf \bar{f}^2 = (\inf |\bar{f}|)^2 \end{cases}$
 $\stackrel{(inf |\bar{f}|)}{=} (\inf |\bar{f}|)^2 - (\inf |\bar{f}|)^2] vol(C)$
 $= \sum_{cep} [(\sup |\bar{f}|) - (\inf |\bar{f}|)][(\sup |\bar{f}|) + (\inf |\bar{f}|)] vol(C)$
 $= \sum_{cep} [(\sup |\bar{f}|) - (\inf |\bar{f}|)][(\sup |\bar{f}|) + (\inf |\bar{f}|)] vol(C)$

$$\leq 2M \sum_{C \in P} \left(\sup_{x \in C} \overline{f} - \inf_{x \in C} \right) vol(C)$$

$$=2M[U(\overline{F}, P) - \mathcal{L}(\overline{F}, P))$$

$$< 2M \cdot \frac{\varepsilon}{2M} = \varepsilon$$

Q.2
Prove that any subset of measure zero set must have measure
zero.
Solution:
A subset
$$A \leq IR^n$$
 is said to have measure zero if $\forall z>0, \exists a$
sequence of rectangles $\{R_i\}_{i=1}^{\infty}$ s.t.
(i) $A \leq \bigcup_{j=1}^{\infty} R_i$
(ii) $\sum_{j=1}^{\infty} vol(R_i) < \varepsilon$.
Let B be any subset of A. Given any $z>0$, we can just choose
 $\{R_i\}_{i=1}^{\infty}$ as mentioned above, so that we have
(i') $B \leq A \leq \bigcup_{j=1}^{\infty} R_i$
(i') $\sum_{i=1}^{\infty} vol(R_i) < \varepsilon$
 \therefore B has measure zero.

Q.3
Give an example of a bounded measure zero subcet whose boundary
does not have measure zero.
Solution:
Let
$$A = \bigotimes (1 E_0, 17 \le |R^4]$$

Claim 1: A has measure zero.
Proof: Let $fg_1 \int_{1=1}^{\infty} be an enumeration of rational number in
E0.1]. Given $\varepsilon > 0$, let $R_{1,\varepsilon} = [g_1 - \frac{\varepsilon}{2^{1+2}}, g_1 + \frac{\varepsilon}{2^{1+2}}]$.
Clearly, $A \le \bigcup R_{1,\varepsilon}$.
Also, $\sum_{i=1}^{\infty} vol(R_{1,\varepsilon}) = \sum_{i=1}^{\infty} \frac{\varepsilon}{2^{i+1}} = \frac{\varepsilon}{2} < \varepsilon$.
Also, $\sum_{i=1}^{\infty} vol(R_{1,\varepsilon}) = \sum_{i=1}^{\infty} \frac{\varepsilon}{2^{i+1}} = \frac{\varepsilon}{2} < \varepsilon$.
Let $x \in [0,1] \le \partial A$, so ∂A does not have measure zero.
Proof: We first show that $E0,13 \le \partial A$.
Let $x \in [0,1]$. Let (a,b) be an open interval containing x .
Note that $[a,b] \cap E0,13$ is always an interval of positive
length, so it must contain some talional number $\neq x$
d irrational number in $E0,13$ by the donsity of $\bigotimes \& \bigotimes^C$, i.e.
 $(a,b) \cap A \neq \oint \& (a,b) \cap (R_1A) \neq \phi$. $\therefore E0,13 \le A$.
Since $vol([0,1]) = 1$, it is impossible to cover ∂A with rectangles
of total volume < $\varepsilon < 1$. $\therefore \partial A$ does not have measure zero.$